CMP 101 Handout #2
David Helmbold
September 30, 1998

ADTs, Modules, and ANSI C

1 Introduction

This document introduces the concepts of Modules and ADTSs, and describes how to implement
them in ANSI C. An Abstract Data Type (or ADT) is a mathematical entity with an associated set
of well defined operations. When an ADT is used in a program, it is usually implemented in its
own module. Each module should be as self-contained as possible and have a well defined interface
detailing what the module does and how it can be used.

2 Abstract Data Types

The standard or built-in types provided by many programming languages (e.g. integer, boolean,
real, and character) are not powerful enough to capture the way we think about the higher level
objects in our programs. This is why most languages have a type declaration mechanism that
allows the user to create high level types as desired. Often the implementation of these high level
types gets spread out throughout the program, creating confusion. Severe errors can be created
when the legal operations on these high level types are not well defined or consistently used.

The term “Abstract Data Type” can mean different things to different people. For the purposes
of this course, an abstract data type is a set of mathematical structures' together with a group of
precisely defined operations that can be applied to the structures in the set. Each ADT object has
a state or value which is one of the mathematical structures in the set. Some of the operations,
called manipulation procedures, cause the ADT object to change its state, so that its value is a
different structure in the set. Other operations, called access functions, return information about
the object without changing its state.

Consider the simple ADT “stack of integers”. The set of mathematical structures for this ADT
is the set of all (finite) sequences of integers. Thus the state of a “stack of integers” at some
point in time is a particular sequence of integers, with the empty sequence representing the empty
stack. There are four operations that we normally associate with a stack, push, pop, topof, and
isempty. The manipulation procedure push takes a stack and an integer j. If the stack was in the
state 41,49, ..., i, then the push operation causes the stack to change its state to 41,149, ...,%,,j. The
manipulation procedure pop is the inverse of push. A pop causes the stack to change state from
11,99, «rey bp—1, % tO %1,79,...,%5_1. The access function isempty returns true if the stack’s state is
the empty sequence and false otherwise. The access function topof returns the last integer in the
sequence, so if the stack were in the state i1, 19, ..., ,, the value 4,, would be returned.

Note that both push and pop manipulate the state of the stack without returning information.
while topof and isempty examine the current state of the stack without making any changes.
One of the key ideas is the separation between operations that manipulate the ADT’s state and
operations that examine the ADT’s state (but don’t change it). You can think of an ADT object as
a “black box” with buttons that can be pressed (manipulation operations) and indicators that can
be read (examination operations). Good ADTs make a clear distinction between these two modes
of operation.

! Mathematical structures include objects like sequences, trees, graphs, sequences of trees, etc.



Note that this operational definition is imprecise because the effect of a topof or pop is not
defined when the stack is empty. One option would be to define that a pop of an empty stack does
not change the stack’s state (i.e. the sequence remains empty) and that a topof operation on an
empty stack returns 0. Unfortunately, these special cases complicate the ADT and can easily lead
to rather severe errors. A better solution is to establish preconditions for each of the operations
indicating when the operations can be performed. The precondition for topofand pop then becomes
“not isempty”. The operations push and isempty can be performed in any state (our mathematical
sequence never “overflows”), so the preconditions for these operations are always met.

In order for an ADT to be useful, the user must be able to determine if the preconditions
for each operation are satisfied. This will usually involve the use of one or more examination
operations. Good ADTs clearly indicate the preconditions of each operation, usually as a sequence
of examination operations. Even those operations whose preconditions are always met must have
an indication to that effect.

The effects of the operations can be stated as postconditions. Whereas preconditions say what
must be true before the operation can be performed, postconditions state what will be true after
the operation is performed. Advanced methods such as axiomatic semantics provide other ways for
specifying ADTs, but these advanced methods will not be dealt with here. However, the description
of ADT operations should be precise enough so that the effect of any sequence of operations can
be determined (assuming all the preconditions are met).

Note that slight changes in the stack operations lead to slightly different ADTs. If a stack is
implemented with a (fixed size) array, then there is the possibility of overflow. This can dealt with at
the ADT level by providing a stackfull access function and making “not stackfull” a precondition for
the push operation. Although both this set of operations and the original ones reflect our intuition
about stacks, they are different ADTs as they have different operations.

It is important to remember that each ADT is a set of mathematical structures. It is possible
(and often desirable) to consider multiple objects of the same ADT. For example, we might want to
talk about several stacks of integers at once. Thus the ADT operations usually will specify which
stack is being operated on. It is even possible for operations to refer to multiple objects, such as an
isequal operation which takes two stack objects and returns true if they are the same sequence, or
a concatenate manipulation which takes two stacks, 1,...,%, and 71, ..., j, and sets the first stack
t0 %1, ey tp,y J1, -, Jn and the second stack to the empty sequence.

Certain ADTs, like lists, are designed to be navigated or traversed. Operations like “Search
the list for X” or “for each Y on the list do” are reasonably common things that a list ADT
user should be able to do. One way of implementing these with an ADT is to have a “current
position” associated with each ADT object and access functions “CurrentValue” and manipulation
procedure “MoveToNext.” Note that the client doesn’t store the current position, but simply calls
the appropriate manipulation procedure when it needs to be changed. The first assignment will
have more on this point.

3 Implementing Abstract Data Types with Handles

ADTs are abstract and pure, and are defined using the language of mathematics (i.e. without any
programming). On the other hand, ADTs are frequently implemented by a program module.
We will distinguish between the mathematical ADT and the ADT’s implementation in some
programming language. In fact, a single ADT could have many different implementations all
with various advantages and disadvantages.

Once an abstract data type has been defined, there is a fairly straightforward way of



implementing it. FEach object of the abstract type is given its own “header record,” a C struct
(or record in Pascal) which provides access to whatever implements the “mathematical structure”.
The user of the ADT gets a handle (usually a pointer to one of these header records) each time it
creates an ADT object. These handles are used only to tell the ADT operations which ADT object
is being operated on. One C function is declared for each of the ADT operations. In addition,
two other C functions are generally required: one to create new objects and one which disposes
of old ones. A linked list implementation of the “stack of integers” might look something like the
following, when storing the sequence 11, 27, 35.

w0
t
o
]
i
—
]
"°\

User’s
Handle -
Size = 3 f/
11 , null
(header record) :
L e o o e e e e e e e e e e e e e e e e e e e e e e e e e e -

Black Box

This implementation keeps a count of the number of elements on the stack. Extra information
like this may be invaluable when debugging. The value of an IsEmpty call?> can be computed by
either seeing if the StackTop pointer is null or checking if the Size is zero.

Note that the ADT implementation is responsible for keeping everything inside of the “Black
Box” consistent. It would be a real disaster (and very difficult to debug) if the user changed
StackTop without adjusting Size. Therefore we insist that only the ADT implementation itself look
at (using access functions) or change anything (using manipulation procedures) inside the “black
box.” The user manipulates the stack only by using the handle and the provided operations.
Preventing the user of the ADT from interfering with the ADT implementation is extremely
important and will be discussed in the section on modules.

It is easy to categorize the C functions provided by the ADT implementation into three groups.

1. C functions implementing the access functions. This group should not change the data
structure associated with the ADT object. The user expects (and should have) exactly the
same mathematical object before and after calling one of these functions.

2. C functions implementing the manipulation procedures. A function which implements a
manipulation procedure should not return a value, and are intended to change something
about the ADT object.

2In order to distinguish between the ADT operations and the functions implementing the operations, slant font
is used for the ADT operations and typewriter font for program identifiers. This implementation also employs the
convention that identifiers have leading caps and when an identifier is composed of two or more words, each word
starts with a capitol letter.



3. C functions which change the ADT handle. Usually there will be only two of these, the
function that creates a new ADT object and the function which disposes (and reclaims the
storage) of objects where are no longer needed.

Comments should indicate which group each function belongs to (as well as the meaning of the
associated ADT operation). In addition, each of the three groups has its own style of function
prototype (the function prototype is an ANSI C feature that allows one to specify what a function
call looks like without giving the entire function body). For access functions use®

Boolean IsEmpty(StackHndl Stack);
int TopOf (StackHndl Stack);

for manipulation procedures use

void Pop (StackHndl Stack);
void Push(StackHndl Stack, int Value);

and for the creation/deletion procedures use

void NewStack (StackHndl *Stack) ;
void FreeStack(StackHndl *Stack);

Note that ANSI C allows one to specify the type of each function argument in the function header
and the return type void indicates that the C function is logically a procedure.

Parameters to C functions are passed by value. Thus in the group 1 and 2 calls the functions
get a copy of the handle. The group 3 functions often need to change the actual handle, causing it
to point to another header record or NULL. The * in the group 3 declarations indicates that the real
parameter is something that points to (i.e. the address of) a stack handle, and thus the function
can change the stack handle by modifying what is stored at the indicated address. This is call by
reference, and is essentially how var parameters work in Pascal. In order to call these procedures
you need to provide the address of a stack handle as in the following.

StackHndl MyStack;

NewStack (& MyStack);

The & in the call causes the address of MyStack to be passed into the function.
Inside the NewStack procedure, the term *Stack is the stack handle; the asterisk should be
considered part of the variable’s name. Thus assigning a value to *Stack, such as

(*Stack) = malloc(sizeof (StackStruct));

causes the the handle to be set to the newly allocated piece of memory. In this example,
StackStruct is the type of the structure containing the StackTop and StackBot pointers.
Sometimes the call by reference parameter needs to be parenthesized, if you are getting strange
errors, try using (*Stack) instead of *Stack.

Another procedure, PrintStack, can be invaluable when you are debugging your code. This
is properly a procedure and should be declared as such even though it shouldn’t change the data
structure representing the stack.

3“Boolean is not one of the C types, however a boolean type can greatly improve program readability.



Allen Van Gelder has described a method of recursive ADTs where some of the manipulation
procedures can change handles. Although this is a powerful technique, it can compromise safety
and be error prone. I have placed his description “A Discipline of Data Abstraction using ANSI C”
on reserve in the science library for those interested in these advanced techniques. Anyone using
Van Gelder’s style on the programs should justify (in comments) any deviations from the style
presented here.

4 Modules

A module is a part of a program that is isolated from the rest of the program by a well defined
interface. Modules make programs easier to write because they break up a complicated program
into several much simpler pieces. Modules make programs easer to test because each module can be
tested separately. Modules also make programs easier to debug since the programmer can determine
which module is screwing up by watching the interface. Perhaps the biggest benefit of modules
is their reusability. Once you have written a good module you can often pull it out of the old
program and plug it into the new program. Finally, modules allow one to program incrementally.
You can make a first pass with dumb, inefficient implementations to make sure your program design
is sound. Then each module can be refined individually, perhaps by using a fancier, more efficient
data structure.

Perhaps the best way to view modules is that they provide a service to clients. A client is
anything that uses a module’s services. Often, modules will use low-level services provided by
other modules in order to provide some higher-level service. A service provided by a module for
use in other modules is said to be ezported. Services used by a module are said to be imported by
that module. It is generally bad to have circular dependencies, where module A imports services
from module B, module B imports services from module C, and module C imports services from
module A.

One of the main ideas behind modules is information hiding — the clients only know the minimum
amount of information necessary to correctly use a module’s services and the details of the module’s
implementation are hidden from the clients*.

To accomplish this information hiding, a module is split into two parts: a header (in a .h file)
indicating what services the module provides and how to use them, and an implementation of those
services (in a .c file). The header file contains all of the function and procedure prototypes as well as
any types exported by the module. Everything used directly by a client must be exported through
the header file. Of course, the effects of the functions/procedures must be also be described by
comments in the header file. The key idea behind header files is that they contain all the information
needed to allow someone else to use your module in their program without being cluttered with
excessive implementation details. A brief description of the high level algorithm(s) used by the
module is desirable, but code is not. All of the actual C code (as opposed to function prototypes
and declarations of exported types) should be in the .c file rather than the header file.

A common misconception is that prototypes for all of a module’s functions and declarations of
all of the module’s types must appear in the header file. This is not true. Only those functions
which are intended to be called by a client are placed in the header file. Other internal functions
can be declared (with function prototypes) in the .c file. Only those types that the client needs
are exported through the .h file. Exporting too much allows the clients to see into the “Black Box”

4See David Parnas’s articles “A Technique for Software Module Specification with Examples”, Comm. of the ACM,
15 (5), 1972 and “On the Criteria To Be Used in Decomposing Systems into Modules”, Comm. of the ACM, 15 (12),
1972 for more information



and destroys the consistency of the module’s data structures.

Students sometimes find it difficult to design good modules and module interfaces. It is even
worse to blindly put each function into its own module than it is to make large programs without
using modules. Each module should be coherent in that all the services it provides are logically
related. The services exported by a module should be potentially useful in another program.
Modules should be used to encapsulate design decisions, so that if you change your mind, only one
module needs to be changed. In general, each ADT implementation should be in its own module —
for instance two files intstack.h and intstack.c might contain the interface and implementation
for the stack ADT discussed earlier. However, not all modules need to be ADT implementations.
For example, a sorting utility might make a good non-ADT module.

Although you may know what clients your module will have (in this program), you should
treat modules as if their clients were going to be written by complete strangers. This may mean
double checking some preconditions. Don’t worry too much about this double checking slowing
down your program. You will spend much more time debugging it than you will running it. Also,
in a “production” final version (after the program has been carefully tested) these double checks
can be commented out.

When implementing modules it is a very good idea to write a small “driver” program that takes
your newly-coded module for a “test drive” to make sure everything is working correctly. All of the
operations should be called, and boundary conditions checked. You might even give the module a
few error situations (like popping an empty stack) to see if its internal consistency checks are up
to the job. It is far easier to debug when you are sure which module the error is in (and having
just coded that particular module doesn’t hurt either). It is also a good idea to re-run your driver
program to double-check any “fixes” you have made to the module’s code.

5 Implementing Modules in ANSI C

As noted in the previous section, a module consists of a header file and a body or implementation
part. The header file is the “promise” made by the module to its clients while the body (in a .c
file) contains the source code implementing the module.

Each header file should describe (in comments) the functionality that the module exports and
any other modules that are imported by this module. This includes the effect and preconditions
of each exported function/procedure as well as any limitations of the implementation (such as
overflows). The C statements in the module should be limited to function prototypes and type
declarations. Type declarations in the .h file are almost always handles, and are usually incomplete,
such as the following.

typedef struct IntStackStruct * StackHndl;

This statement declares type StackHndl to be a pointer to a structure called IntStackStruct.
Although the IntStackStruct structure has not yet been defined (it will be defined in the .c file),
this declaration allows the .h file to declare functions that take StackHndl’s as arguments. This
declaration also allows clients to declare variables of type StackHndl and use them as arguments
to the module’s functions and procedures. Note that the client cannot reference through these
pointers, that is part of the “information hiding.” Only the hidden (.c) parts of the module should
manipulate these pointers and the structures they point to.

The operations exported by the module are declared using function prototypes. as indicated in
the “Implementing Abstract Data Types with Handles” section. The operations imported by the
module are imported through the inclusion of .h files in that module’s .c file. It is recommended



that .h files never include other files, and that each module’s .c file start by including its own .h
file and the .h files of the other modules that it uses. If types needed in the .h file are exported
by other modules, then a big comment should be included in the .h file so any clients know what
other inclusion(s) to make.

Each module is responsible for allocating and freeing all of the memory used inside of its “black
box.” Modules may also be able to maintain their own “free lists.” For example, the stack of
integers example will need to allocate records for the stack elements. When a pop is done it may
be easier to store the no-longer needed record on a list (maintained by the module) for use the next
time a push is done on any integer stack.

Most of you already make a directory for each program. There are a few other things that can
be done to handle the many modules, header files, drivers and such. First, each directory should
have a READVE file describing what the directory is for and one line which names and describes each
file in the directory. Each module should have at least three files associated with it: module.h,
module. c, and moduledr.c. The moduledr.c file contains the driver program which checks out
the module. The main program should be called progmain.c. There should be a makefile called
Makefile which allows the main program to be compiled with the single command “make”. You
will be asked to turn in all of these files for each program.

The complete code for the stack of integers module will be available as an example in the class
directory.

Some people may (correctly) complain that the “stack of integers” is not really a general purpose
stack, that writing a “stack of anythings” once is enough. The problem is that C’s type mechanism
is not advanced enough to properly deal with this issue. There are two possible solutions. The
safer solution is to simply edit your stack of integers to be a stack of whatever it is you need a
stack of. Simply by changing the appropriate ints to the new type will get you a ready-made stack
implementation. This change can be done more easily if you use define the type StackE1Type by

typedef int StackElType;

in the .h file and use StackE1Type whenever you want to talk about the things that get stored on
the stack. This methodology lets you change the element type by editing a single line.

These simple fixes have the drawback that if you want stacks of floats and stacks of ints in the
same program, then you need two stack modules. A more powerful technique (but more dangerous)
is to make the StackE1Type be void*, a generic pointer. Now the same stack module can handle
stacks which hold any kinds of pointers. The danger is that a client might get confused and push
or pull off the wrong kind of pointer. Using void* means that you will not find out about this
problem until you run the program and get a segmentation fault or bus error. These pointer errors
can be next to impossible to debug. Although both the typedef int StackElType; and the
generic pointer approaches are acceptable, It is recommended that students use the safer solution
in this course, especially those students who do not have extensive C experience.



